Use the following graph to answer questions 1 through 3.

1. At point F

- (a) f(x) is negative and f'(x) is zero
- (b) f(x) is zero and f'(x) is negative
- (c) f(x) is positive and f'(x) is zero (d) f(x) is zero and f'(x) is positive (e) none of the above

2. f'(x) at point A is greater than

- (a) f'(x) at point **B**
- (b) f'(x) at point **E**
- (c) f'(x) at point **F**
- (d) all of the above
- (e) none of the above

3. At point B

- (a) f(x) is positive and f'(x) is negative
- (b) f(x) is negative and f'(x) is positive
- (c) f(x) is negative and f'(x) is negative
- (d) f(x) is positive and f'(x) is positive
- (e) none of the above

Use the following graph to answer questions 4 through 8.

4.
$$\lim_{x \to 1} f(x) =$$

- (a) 2
- (b) 3
- (c) does not exist (or undefined)
- (d) none of the above

5.
$$\lim_{x \to -4^-} f(x) =$$

- (a) 1
- (b) 2
 - (c) does not exist (or undefined)
 - (d) none of the above

6.
$$\lim_{x \to -4^+} f(x) =$$

- (a) 1
- (b) 2
- (c) does not exist (or undefined)
- (d) none of the above

$$7 \quad \lim_{x \to -4} f(x) =$$

- (a) 1
- (b) 2
- (c) does not exist (or undefined)
- (d) none of the above

8.
$$f(-4) =$$

- (a) 1
- (b) 2
- (c) does not exist (or undefined)
- (d) none of the above

- 9. $\lim_{x\to 5} \left(\frac{x^2+8x+15}{x^2+2x-15}\right) =$
 - (a) 0
 - (b) 4
 - (c) 5
 - (d) does not exist (or undefined)
 - (e) none of the above
- $10. \lim_{x\to 1} \left(\frac{1-\sqrt{x}}{x-1}\right) =$
 - (a) -1/2
 - (b) 1/2
 - (c) 0
 - (d) does not exist (or undefined)
 - (e) none of the above

11.
$$\lim_{x \to 3} \left(\frac{x^2 + x - 12}{x - 3} \right) =$$

- (a) 7
- (b) 0
- (c) 4
- (d) does not exist (or undefined)
- (e) none of the above

Use the following graph to answer questions 12 and 13.

12. Which formula below is a formula for the slope of the line L?

(a)
$$\frac{f(x+h)}{(x+h)}$$

(b)
$$\frac{f(x+h) - f(x)}{(x+h) - x}$$

(c)
$$\frac{f(x) + h - f(x)}{(x+h) - x}$$

(d)
$$\frac{f(x) - f(x+h)}{(x+h) - x}$$

(e)
$$\frac{f(x)}{x}$$

13 Which formula below is a formula for the slope of the tangent line M?

(a)
$$\lim_{h\to 0} \frac{f(x+h)}{(x+h)}$$

(b)
$$\lim_{h\to 0} \frac{f(x+h) - f(x)}{(x+h) - x}$$

(c)
$$\lim_{h\to 0} \frac{f(x) + h - f(x)}{(x+h) - x}$$

(d)
$$\lim_{h\to 0} \frac{f(x) - f(x+h)}{(x+h) - x}$$

(e)
$$\lim_{h\to 0} \frac{f(x)}{x}$$

14 If $f(x) = \sqrt[3]{2x^2 - x}$, then f'(x) =

- (a) $\frac{1}{3}(2x^2-x)^{-2/3}$
- (b) $\frac{1}{3}(4x-1)^{-2/3}$
- (c) $\frac{1}{3}(2x^2-x)^{-2/3}(4x-1)$
- (d) $\frac{1}{3}(2x^2-x)^{-1/3}(4x-1)$
- (e) none of the above

15. If $f(x) = (x^2 + 1)^3$, then f'(x) =

- (a) $3(x^2+1)^2(2x)$
 - (b) $3(x^2+1)^2$
 - (c) $3(2x)^2$
 - (d) $3(x^2+1)^2(2)$
 - (e) none of the above

16. If $f(x) = 2x\sqrt{x+1}$, then f'(x) =

- (a) $2(x+1)^{1/2} + x(x+1)^{-1/2}$
- (b) $2(x+1)^{-1/2} + x(x+1)^{-1/2}$
- (c) $x(x+1)^{-1/2}$
- (d) $(x+1)^{-1/2}$
- (e) none of the above

17. If $f(x) = \frac{3x-10}{x^2+1}$, then f'(x) =

- (a) $\frac{2x(3x-10)-3(x^2+1)}{(x^2+1)^2}$
- (b) $\frac{3(x^2+1)-2x(3x-10)}{(x^2+1)^2}$
- (c) $\frac{3(x^2+1)+2x(3x-10)}{(x^2+1)^2}$
- (d) $\frac{3}{2x}$
- (e) none of the above

- 18. For $f(x) = 2x^2 5x$, what is $\frac{f(x+h) f(x)}{h}$
 - (a) $\frac{4xh + 2h^2 5h}{h}$
 - (b) $\frac{-10x+h}{h}$
 - (c) $\frac{4xh+2h^2-5x}{h}$
 - (d) $\frac{2xh + 2h^2 5h}{h}$
 - (e) none of the above
- 19. Let $f(x) = 5x x^3$. The equation of the tangent line to f(x) at the point (2,2) is
 - (a) y = 7x 16
 - (b) y = 2x 2
 - (c) y = -7x + 16
 - (d) y = -7x 16
 - (e) none of the above
- 20. If $f(x) = x^4 3x^3 + x 2$, then f''(2) =
 - (a) 48
 - (b) 16
 - (c) 12
 - (d) -10
 - (e) none of the above